Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029966

RESUMO

Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a ß-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system. Here, we report the discovery of a homologous cystargolide biosynthetic pathway in Streptomyces durhamensis NRRL-B3309 by genome mining. The gene cluster was cloned via transformation-associated recombination and heterologously expressed in Streptomyces coelicolor M512. We demonstrate that it contains all genes necessary for the production of cystargolide A and B. Single gene deletion experiments reveal that only five of the eight genes from the initially proposed gene cluster are essential for cystargolide synthesis. Additional insights into the cystargolide pathway could be obtained from in vitro assays with CysG and chemical complementation of the respective gene knockout. This could be further supported by the in vitro investigation of the CysG homolog BelI from the belactosin biosynthetic gene cluster. Thereby, we confirm that CysG and BelI catalyze a cryptic SAM-dependent transfer of a methyl group that is critical for the construction of the cystargolide and belactosin ß-lactone warheads.


Assuntos
Dipeptídeos , Metiltransferases , Streptomycetaceae , Vias Biossintéticas , Dipeptídeos/metabolismo , Lactonas/metabolismo , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Streptomyces coelicolor/genética , Streptomycetaceae/enzimologia , Streptomycetaceae/genética
2.
Org Lett ; 24(2): 736-740, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34990553

RESUMO

Belactosin A, a ß-lactone proteasome inhibitor, contains a unique 3-(trans-2'-aminocyclopropyl)alanine moiety. We recently identified the biosynthetic gene cluster of the belactosin series from Streptomyces sp. UCK14. To shed light on the formation of the aminocyclopropylalanine, we established a heterologous pathway expression, constructed a set of gene deletion mutants, and performed feeding studies for a chemical complementation that include the incorporation of stable isotope-labeled precursors. We thereby show that, in the biosynthesis of this building block, a cryptic nitrocyclopropylalanine intermediate is generated from l-lysine. The subsequent reduction of the N-oxygenated precursor to the corresponding amine is mediated by the molybdopterin-dependent enzyme BelN.


Assuntos
Alanina
3.
J Am Chem Soc ; 143(44): 18413-18418, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710328

RESUMO

Belactosins and hormaomycins are peptide natural products containing 3-(2-aminocyclopropyl)alanine and 3-(2-nitrocyclopropyl)alanine residues, respectively, with opposite stereoconfigurations of the cyclopropane ring. Herein we demonstrate that the heme oxygenase-like enzymes BelK and HrmI catalyze the N-oxygenation of l-lysine to generate 6-nitronorleucine. The nonheme iron enzymes BelL and HrmJ then cyclize the nitroalkane moiety to the nitrocyclopropane ring with the desired stereochemistry found in the corresponding natural products. We also show that both cyclopropanases remove the 4-proS-H of 6-nitronorleucine during the cyclization, establishing the inversion and retention of the configuration at C4 during the BelL and HrmJ reactions, respectively. This study reveals the unique strategy for stereocontrolled cyclopropane synthesis in nature.


Assuntos
Ciclopropanos/síntese química , Depsipeptídeos/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Depsipeptídeos/genética , Depsipeptídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Estrutura Molecular , Estereoisomerismo , Streptomyces/genética
4.
Microb Physiol ; 31(3): 217-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34139700

RESUMO

Nocardia spp. are filamentous Actinobacteria of the order Corynebacteriales and mostly known for their ability to cause localized and systemic infections in humans. However, the onset and progression of nocardiosis is only poorly understood, in particular the mechanisms of strain-specific presentations. Recent genome sequencing has revealed an extraordinary capacity for the production of specialized small molecules. Such secondary metabolites are often crucial for the producing microbe to survive the challenges of different environmental conditions. An interesting question thus concerns the role of these natural products in Nocardia-associated pathogenicity and immune evasion in a human host. In this review, a summary and discussion of Nocardia metabolites is presented, which may play a part in nocardiosis because of their cytotoxic, immunosuppressive and metal-chelating properties or otherwise vitally important functions. This review also contains so far unpublished data concerning the biosynthesis of these molecules that were obtained by detailed bioinformatic analyses.


Assuntos
Actinobacteria , Produtos Biológicos , Nocardiose , Nocardia , Humanos , Nocardia/genética , Nocardiose/tratamento farmacológico , Virulência
5.
J Biol Chem ; 296: 100519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684445

RESUMO

Endo-ß-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the ß-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-ß-N-acetylmuramidases, which catalyze an exo-lytic cleavage of ß-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-ß-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl ß-MurNAc and the peptidoglycan-derived disaccharide MurNAc-ß-1,4-GlcNAc. Together with the exo-ß-N-acetylglucosaminidase NagZ and the exo-muramoyl-l-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www.cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria.


Assuntos
Acetilglucosamina/metabolismo , Bacillus subtilis/enzimologia , Glicosídeo Hidrolases/metabolismo , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Hidrólise , Conformação Proteica
6.
Microb Cell Fact ; 14: 192, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608263

RESUMO

BACKGROUND: PII signal processor proteins are wide spread in prokaryotes and plants where they control a multitude of anabolic reactions. Efficient overproduction of metabolites requires relaxing the tight cellular control circuits. Here we demonstrate that a single point mutation in the PII signaling protein from the cyanobacterium Synechocystis sp. PCC 6803 is sufficient to unlock the arginine pathway causing over accumulation of the biopolymer cyanophycin (multi-L-arginyl-poly-L-aspartate). This product is of biotechnological interest as a source of amino acids and polyaspartic acid. This work exemplifies a novel approach of pathway engineering by designing custom-tailored PII signaling proteins. Here, the engineered Synechocystis sp. PCC6803 strain with a PII-I86N mutation over-accumulated arginine through constitutive activation of the key enzyme N-acetylglutamate kinase (NAGK). RESULTS: In the engineered strain BW86, in vivo NAGK activity was strongly increased and led to a more than tenfold higher arginine content than in the wild-type. As a consequence, strain BW86 accumulated up to 57 % cyanophycin per cell dry mass under the tested conditions, which is the highest yield of cyanophycin reported to date. Strain BW86 produced cyanophycin in a molecular mass range of 25 to >100 kDa; the wild-type produced the polymer in a range of 30 to >100 kDa. CONCLUSIONS: The high yield and high molecular mass of cyanophycin produced by strain BW86 along with the low nutrient requirements of cyanobacteria make it a promising means for the biotechnological production of cyanophycin. This study furthermore demonstrates the feasibility of metabolic pathway engineering using the PII signaling protein, which occurs in numerous bacterial species.


Assuntos
Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Synechocystis/metabolismo , Amônia/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Microscopia Eletrônica de Transmissão , Nitratos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Mutação Puntual , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA